變頻器常用的控制方式綜述(2)
2.2 智能控制方式
智能控制方式主要有神經網絡控制、模糊控制、專家系統、學習控制等。在變頻器的控制中采用智能控制方式在具體應用中有一些成功的范例。
(1) 神經網絡控制
神經網絡控制方式應用在變頻器的控制中,一般是進行比較復雜的系統控制,這時對于系統的模型了解甚少,因此神經網絡既要完成系統辨識的功能,又要進行控制。而且神經網絡控制方式可以同時控制多個變頻器 [18][19],因此在多個變頻器級聯時進行控制比較適合。但是神經網絡的層數太多或者算法過于復雜都會在具體應用中帶來不少實際困難。
(2) 模糊控制
模糊控制算法用于控制變頻器的電壓和頻率,使電動機的升速時間得到控制,以避免升速過快對電機使用壽命的影響以及升速過慢影響工作效率 [20][21]。模糊控制的關鍵在于論域、隸屬度以及模糊級別的劃分,這種控制方式尤其適用于多輸入單輸出的控制系統。
(3) 專家系統
專家系統是利用所謂 “專家”的經驗進行控制的一種控制方式,因此,專家系統中一般要建立一個專家庫,存放一定的專家信息,另外還要有推理機制,以便于根據已知信息尋求理想的控制結果。專家庫與推理機制的設計是尤為重要的,關系著專家系統控制的優劣。應用專家系統既可以控制變頻器的電壓,又可以控制其電流[22][23]。
(4) 學習控制
學習控制主要是用于重復性的輸入,而規則的 PWM信號(例如中心調制PWM)恰好滿足這個條件,因此學習控制也可用于變頻器的控制中[24]。學習控制不需要了解太多的系統信息,但是需要1~2個學習周期,因此快速性相對較差,而且,學習控制的算法中有時需要實現超前環節,這用模擬器件是無法實現的,同時,學習控制還涉及到一個穩定性的問題,在應用時要特別注意。
3 變頻器控制的展望
隨著電力電子技術、微電子技術、計算機網絡等高新技術的發展,變頻器的控制方式今后將向以下幾個方面發展。
(1) 數字控制變頻器的實現 現在,變頻器的控制方式用數字處理器可以實現比較復雜的運算,變頻器數字化將是一個重要的發展方向,目前進行變頻器數字化主要采用單片機MCS51[25]或80C196MC[3][20]等,輔助以SLE4520[25][28]或EPLD液晶顯示器[29]等來實現更加完善的控制性能。
(2) 多種控制方式的結合 單一的控制方式有著各自的優缺點,并沒有"萬能"的控制方式,在有些控制場合,需要將一些控制方式結合起來,例如將學習控制與神經網絡控制相結合[30],自適應控制與模糊控制相結合[31][32],直接轉矩控制與神經網絡控制相結合[33],或者稱之為”混合控制"[34],這樣取長補短,控制效果將會更好。
(3) 遠程控制的實現 計算機網絡的發展,使"天涯若咫尺",依靠計算機網絡對變頻器進行遠程控制也是一個發展方向。通過RS485[35][36]接口及一些網絡協議對變頻器進行遠程控制,這樣在有些不適合于人類進行現場操作的場合,也可以很容易的實現控制目標[37][38]。
(4) 綠色變頻器 隨著可持續發展戰略的提出,對于環境的保護越來越受到人們的重視。變頻器產生的高次諧波對電網會帶來污染,而且降低變頻器工作時的噪聲以及增強其工作的可靠性、安全性等等這些問題,都試圖通過采取合適的控制方式來解決,設計出綠色變頻器。
4 結束語
變頻器的控制方式是一個值得研究的問題,依靠致力于這項工作的有識之士的共同努力,使國產變頻器早日走向世界市場并且成為一流的產品。(end)
智能控制方式主要有神經網絡控制、模糊控制、專家系統、學習控制等。在變頻器的控制中采用智能控制方式在具體應用中有一些成功的范例。
(1) 神經網絡控制
神經網絡控制方式應用在變頻器的控制中,一般是進行比較復雜的系統控制,這時對于系統的模型了解甚少,因此神經網絡既要完成系統辨識的功能,又要進行控制。而且神經網絡控制方式可以同時控制多個變頻器 [18][19],因此在多個變頻器級聯時進行控制比較適合。但是神經網絡的層數太多或者算法過于復雜都會在具體應用中帶來不少實際困難。
(2) 模糊控制
模糊控制算法用于控制變頻器的電壓和頻率,使電動機的升速時間得到控制,以避免升速過快對電機使用壽命的影響以及升速過慢影響工作效率 [20][21]。模糊控制的關鍵在于論域、隸屬度以及模糊級別的劃分,這種控制方式尤其適用于多輸入單輸出的控制系統。
(3) 專家系統
專家系統是利用所謂 “專家”的經驗進行控制的一種控制方式,因此,專家系統中一般要建立一個專家庫,存放一定的專家信息,另外還要有推理機制,以便于根據已知信息尋求理想的控制結果。專家庫與推理機制的設計是尤為重要的,關系著專家系統控制的優劣。應用專家系統既可以控制變頻器的電壓,又可以控制其電流[22][23]。
(4) 學習控制
學習控制主要是用于重復性的輸入,而規則的 PWM信號(例如中心調制PWM)恰好滿足這個條件,因此學習控制也可用于變頻器的控制中[24]。學習控制不需要了解太多的系統信息,但是需要1~2個學習周期,因此快速性相對較差,而且,學習控制的算法中有時需要實現超前環節,這用模擬器件是無法實現的,同時,學習控制還涉及到一個穩定性的問題,在應用時要特別注意。
3 變頻器控制的展望
隨著電力電子技術、微電子技術、計算機網絡等高新技術的發展,變頻器的控制方式今后將向以下幾個方面發展。
(1) 數字控制變頻器的實現 現在,變頻器的控制方式用數字處理器可以實現比較復雜的運算,變頻器數字化將是一個重要的發展方向,目前進行變頻器數字化主要采用單片機MCS51[25]或80C196MC[3][20]等,輔助以SLE4520[25][28]或EPLD液晶顯示器[29]等來實現更加完善的控制性能。
(2) 多種控制方式的結合 單一的控制方式有著各自的優缺點,并沒有"萬能"的控制方式,在有些控制場合,需要將一些控制方式結合起來,例如將學習控制與神經網絡控制相結合[30],自適應控制與模糊控制相結合[31][32],直接轉矩控制與神經網絡控制相結合[33],或者稱之為”混合控制"[34],這樣取長補短,控制效果將會更好。
(3) 遠程控制的實現 計算機網絡的發展,使"天涯若咫尺",依靠計算機網絡對變頻器進行遠程控制也是一個發展方向。通過RS485[35][36]接口及一些網絡協議對變頻器進行遠程控制,這樣在有些不適合于人類進行現場操作的場合,也可以很容易的實現控制目標[37][38]。
(4) 綠色變頻器 隨著可持續發展戰略的提出,對于環境的保護越來越受到人們的重視。變頻器產生的高次諧波對電網會帶來污染,而且降低變頻器工作時的噪聲以及增強其工作的可靠性、安全性等等這些問題,都試圖通過采取合適的控制方式來解決,設計出綠色變頻器。
4 結束語
變頻器的控制方式是一個值得研究的問題,依靠致力于這項工作的有識之士的共同努力,使國產變頻器早日走向世界市場并且成為一流的產品。(end)
本文標簽:變頻器常用的控制方式綜述(2)
* 由于無法獲得聯系方式等原因,本網使用的文字及圖片的作品報酬未能及時支付,在此深表歉意,請《變頻器常用的控制方式綜述(2)》相關權利人與機電之家網取得聯系。










