3:PLC的PID運算調節通過該型處理器專用PID指令完成,通過設置各參數即可由PLC完成PID運算調節。PID程序段流程如圖4。PID指令必須以相同的時間間隔周期性地執行,可采用計時器,定時中斷或實時采樣的等方法,此處選用了定時方法;PV是PID指令采樣的壓力控制反饋值,SP是PID指令的壓力控制設定值,KP為PID的比例增益,KI為PID的積分增益,KD為PID的微分增益,這五個控制參數作為主要的PID參數參與控制,確定PID參數時要兼顧系統靈敏性和穩定性,由于我們恒壓控制要求和設備的性能條件,參數設定更強調穩定性(及KI),由于微分環節有放大噪聲的特點,我們將KD盡量設置得較小;SWM為PID指令轉為手動直接調頻的開關,SO設定為PID指令的在手動控制輸出方式時的輸出值,當變頻器從PID自控調節轉為手動直接調頻時,SO替代PID運算結果作為轉換時的輸出值,將SO設定為控制值就可實現無縫轉換,減小變頻器運行頻率的震蕩。DB為PID指令的死區設定值,輸出超出死區時PID指令通過自動運算限制輸出超出限定范圍。
圖4 PID流程圖
3.3 相關控制功能實現
為了防止運行時由于壓力變送器不可預見的故障造成PLC的PID運算調節失實,從而造成管網壓力失恒引發失壓或爆管的嚴重事故。我們分別在1#和2#變頻泵后輸水管上安裝壓力變送器,可以同時測到出廠輸水管線上的壓力;在PLC程序上對壓力信號進行了相應的處理,在程序中設置選擇軟開關,調度人員可以在RSView上將其中一臺壓力變送器的值設定為“控制反饋值”,另一臺壓力變送器的值則設為“參考反饋值”(見圖2:變頻恒壓供水系統控制圖形界面(RSView工作站));對1#壓力和2#壓力值進行比較,相差0.1Mpa時,判斷為,其中一只壓力變送器出現故障,變頻器控制轉換為遠程直接手動調頻控制(通過RSView設置運行)。壓力變送器正常工作時,“控制反饋值”經過平均濾波處理后,分別比較壓力報警上限和下限值,如果超出控制范圍,變頻器控制轉換為遠程直接手動調頻控制,否則“控制反饋值”作為PID調節的參數PV。
同時為了在就地手動控制實現在控制現場對變頻泵進行開停控制和運行數據監視。我們在變頻泵工作現場安裝了A-B公司的PanelView圖形工作終端,該工作終端提供圖形交互界面和觸摸輸入方式,以從站的方式與PLC進行通信,進行數據和控制命令的交換,提供就地監控操作的通道。
4. 運行效果分析
4.1 有效保證郫縣供水和我廠自用水壓力穩定,提高我廠供水安全可靠性
圖5為數據庫采集的2001年某日我廠恒壓變頻泵出水壓力、頻率變化以及郫縣供水和自用水流量、管網壓力數據關系圖。
圖5 變頻恒壓控制頻率、壓力、供水量關系圖
從圖中數據可看出郫縣小時供水量變化很大,如果采用定速泵進行供水必然會導致高峰供水時段內管網供水壓力不足,夜間用水量較小時管網壓力過高,造成爆管現象。采用變頻恒壓控制后,變頻器的頻率隨郫縣用水量的變化而變化,及時調節我廠對郫縣供水量,從而使郫縣城區管網壓力在一個較小的范圍內變化(0.23-0.27Mpa)。另一方面,雖然我廠自用水秒流量變化不大,但由于我廠自用水和郫縣供水為同一水泵加壓后,分作兩條支流,郫縣用水量的變化必然也會導致自用水壓力不穩定,采用恒壓變頻控制方式,基本克服了這種變化因素。從上圖曲線也可看出,我廠自用水壓力基本恒定不變。這樣保證了我廠加氯水射器等重要設備的正常工作,保證了正常的消毒工藝流程,從而保證我廠出廠水水質,提高我廠供水的安全可靠性。
4.2 高效節能
通過采用變頻調速恒壓控制,可在不同季節、全天不同時段內有效即時地調控水量,這樣在用水量較低時,大大節約供水量,減少電耗。
在設定壓力內跟隨用水量供水,避免了傳統供水方式的損耗,降低噸水消耗。
4.3 提高自動化水平
根據我廠建立自動控制系統的原則“分散控制、集中管理、現場無人值守”,變頻恒壓供水技術的應用提高了我廠自控系統的整體水平,真正作到了操作簡便安全,現場無人職守,運行安全可靠。










