產品詳情
穿孔板聲屏障吸聲結構是一種板厚度和孔徑都小的穿孔板結構,其孔徑一般不大于3mm。微穿孔板吸聲結構同樣屬于共振吸聲結構,其吸聲機理與穿孔板結構也基本相同。與普通穿孔板吸聲結構相比,其特點是吸聲頻帶寬、吸聲系數高,缺點是加工困難、成本高。微穿孔板吸聲結構也可以組合成雙層或多層結構使用,以進一步提高其吸聲性能。
由穿孔板聲屏障構成的共振吸聲結構被稱做穿孔板共振吸聲結構,它也是工程中常用的共振吸聲結構。對于多孔共振吸聲結構,實際上可以看成單孔共振吸聲結構的并聯結構,因此多孔共振吸聲結構的吸聲性能要比單孔共振吸聲結構的吸聲效果好,通過孔參數的優化設計,可以有效改善穿孔板聲屏障吸聲頻帶等性能。以生命周期理論為基礎,對典型墻體材料建立了能源、環境與成本的多目標評價模型.結合陜西區域發展情況,對10種典型墻體材料進行了多目標評價,得到了適合陜西區域情況的墻體材料生命周期評價結果,該評價結果可作為墻體材料推廣應用的指導性依據.
穿孔板聲屏障的共振頻率與穿孔板的穿孔率、空腔深度都有關系,與穿孔板孔的直徑和孔厚度也有關系。穿孔板的穿孔面積越大,吸聲頻率就越高;空腔或板的厚度越大,吸聲頻率就越低。為了改變穿孔板的吸聲特性,可以通過改變上述參數以滿足聲學設計上的需要。穿孔板主要用于吸收中、低頻率的噪聲,穿孔板的吸聲系數在0.6左右。多穿孔板的吸聲帶寬定義為,吸聲系數下降到共振時吸聲系數的一半的頻帶寬度為吸聲帶寬,穿孔板的吸聲帶寬較窄,只有幾十赫茲到幾百赫茲。
基于Matlab自編程序對瀝青混合料CT圖片進行集料微觀結構的三維重構與分離,并對分離后的集料顆粒等效直徑、表面積、體積等三維幾何信息進行了計算與論證.結果表明:基于CT技術進行瀝青混合料集料微觀結構的三維重構與分離切實可行,并且集料的三維幾何信息計算結果與實際數據非常吻合. 
金屬吸聲尖劈隔音屏主要是在金屬板體的底面密布凹設諸多錐底具有一圓形微細孔的三角錐,然后在金屬板體的頂面設具成形為微細波浪型表面,且于波浪型表面上對應橢圓形微細孔處上方周圍亦凹設成形三角錐形。這不僅可增加了裝飾效果,而且因為增加了材料暴露在聲場中的面積,即增加了有效吸聲面積,并使聲波進入到材料深處,可提高尖劈隔音屏的吸聲性能。基于固相分形模型和格子Boltzmann方法,通過數值模擬手段研究非飽和硬化水泥漿的氯離子擴散性能.首先應用固相分形模型來模擬硬化水泥漿的多孔結構,在此基礎上采用格子Boltzmann方法模擬相應的氯離子擴散.在固相分形模型中,按照孔隙尺寸分布對硬化水泥漿多孔結構進行逐級飽和來實現飽和度的變化.對比當前數值模擬的結果與經典冪函數型飽和函數的預測結果,發現二者吻合較好,飽和系數的合理取值為4~5.
金屬吸聲體或吸聲尖劈隔音屏是一種的、自成體系的吸聲結構,它主要由多孔性吸聲材料加尖錐式結構構成,它不需要壁板結構一起形成共振空腔。其特點是吸聲性能好、便于安裝,要求是質量輕、便于施工等。金屬吸聲尖劈隔音屏常采用超細玻璃棉作為填充材料,采用金屬框或H型鋼結構等為支撐架,采用玻璃絲布作為外包裝防水材料,有時也采用穿孔率大于20%的穿孔板作為外包裝。采用3種材料(第1種以有機硅為主要成分并引入氟碳化合物;第2種是質量分數分別為30%和70%的Remmers300和酒精;第3種是質量分數分別為30%和70%的硅烷單體和酒精)來加固石質文物樣品,然后用單邊核磁技術探測樣品0,3,5mm深度剖面的孔隙率、孔徑分布.結果發現:經過加固處理的樣品孔隙率有所減小,同時具有較小的含水率;用第1種和第3種材料加固的樣品其滲透加固效果較好,但通過三維形貌儀分析發現,第3種加固材料使樣品表面形貌及顏色改變較大.綜合比較后得出,第1種加固材料較為理想.
金屬吸聲體的吸聲性能與聲尖劈隔音屏的總長度以及空腔的深度、填充的吸聲材料的吸聲特性等都有關系,吸聲尖劈隔音屏越長,其低頻吸聲性能越好。


