產品詳情
煤質柱狀活性炭的吸附操作原理:利用某些多孔固體有選擇地吸附流體中的一個或幾個組分,從而使混合物分離的方法稱為吸附操作,它是分離和純凈氣體和液體混合物的重要單元操作之一。實際上,人們很早就發現并利用了吸附現象,如生活中用木炭脫濕和除臭等。隨著新型吸附劑的開發及吸附分離工藝條件等方面的研究,吸附分離過程顯示出節能、產品純度高、可除去痕量物質、操作溫度低等突出特點,使這一過程在化工、醫藥、食品、輕工、環保等行業得到了廣泛的應用,例如:
(1)氣體或液體的脫水及深度干燥,如將乙烯氣體中的水分脫到痕量,再聚合。
(2)氣體或溶液的脫臭、脫色及溶劑蒸氣的回收,如在噴漆工業中,常有大量的有機溶劑逸出,采用活性炭處理排放的氣體,既減少環境的污染,又可回收有價值的溶劑。
(3)氣體中痕量物質的吸附分離,如純氮、純氧的制取。
(4)分離某些精餾難以分離的物系,如烷烴、烯烴、芳香烴餾分的分離。
(5)廢氣和廢水的處理,如從高爐廢氣中回收一氧化碳和二氧化碳,從煉廠廢水中脫除酚等有害物質。
煤質柱狀活性炭的吸附分類:
物理吸附:它的嚴格定義是某個組分在相界層區域的富及集。物理吸附的作用力是固體表面與氣體分子之間,以及已被吸附分子與氣體分子間的范德華引力,包括靜電力誘導力和色散力。物理吸附過程不產生化學反應,不發生電子轉移、原子重排及化學鍵的破壞與生成。由于分子間引力的作用比較弱,使得吸附質分子的結構變化很小。在吸附過程中物質不改變原來的性質,因此吸附能小,被吸附的物質很容易再脫離,如用活性炭吸附氣體,只要升高溫度,就可以使被吸附的氣體逐出活性炭表面。
化學吸附:是指吸附劑與吸附質之間發生化學作用,生成化學鍵引起的吸附,在吸附過程中不僅有引力,還運用化學鍵的力,因此吸附能較大,要逐出被吸附的物質需要較高的溫度,而且被吸附的物質即使被逐出,也已經產生了化學變化,不再是原來的物質了,一般催化劑都是以這種吸附方式起作用。
物理吸附和化學吸附并不是孤立的,往往相伴發生。在污水處理技術中,經常能夠看到煤質柱狀活性炭的身影,大部分的吸附往往是幾種吸附綜合作用的結果。

