消費性產品與通訊產品都要能支援高運算量和資料轉換的功能。這些產品對體積大小和耗電量的要求很嚴格,而數位訊號處理器(DSP),就是這些產品最核心的部份。為了支援這些產品的需求和應用,DSP應該是可程式化的、可設定的和可擴充的。因此高速可設定式DSP因此應運而生,它非常適合應用在需要高效能、低功率且可以彈性設計的消費性產品和通訊產品上。 消費性產品與通訊產品,基本上都要能支援高運算量和資料轉換(transformation)的功能。例如:視訊影像的編碼與解碼、聲音的壓縮與解壓縮,或者影像資料的處理及壓縮、語音的播放以及通訊頻道的編解碼等應用。 這些產品對體積大小和耗電量的要求很嚴格,而且要求能針對特定的規格提供最佳的支援。而所謂特定的規格就是指產品的應用功能。例如:手提式視訊裝置需要低功率和低成本,但影像品質并不高;不過,視訊廣播市場所需要的視訊產品,則必須是高畫質的,且其運算處理效能一定要高。
此外,目前許多產品都必須同時支援多種應用項目,或必須支援具有多種格式(format)的單一應用。譬如:只支援MPEG2的視訊產品,將必須同時支持MPEG4、H26L、MSWM和其它視訊標準;而WLAN通訊裝置除了要支援802.11的不同版本標準以外,有時還得支援其它的無線電標準。
而數位訊號處理器(digital signal processing;DSP),就是這些產品最核心的部份,負責處理那些需要大量運算的資料。為了有效地支援這些產品的需求和應用,DSP應該是可程式化的(programmable)、可設定的(configurable/reconfigurable)和可擴充的(scalable)。高速的可設定式DSP因此應運而生,它非常適合應用在需要高效能、低功率且可以彈性設計的消費性產品和通訊產品上。
高速可設定式DSP的設計目的,簡單說,就是要在單一的系統級單晶片(SoC)架構下,支援許多種應用和需求,而且使用者可以利用高階語言來開發。為了能盡早完成產品的開發工作,使產品能提早上市,這種新技術將是無法抵擋的趨勢。 必須了解的定義 有幾個定義必須先了解。首先,所謂「可程式化」,是指它可以處理指令,而不是指執行固定的函式(function)。對DSP而言,指令可以來自于高階語言(C、Java、C++)的編譯器(compiler),也可以經由手寫程式(組合語言)產生。這有別于傳統的DSP功能,因為可設定式DSP具有類似中央處理器(CPU)的功能。其實,正如DSP的原名──「數位訊號處理器」,它本來就應該是一種處理器;只不過,傳統的DSP并沒有將CPU核心納入架構中,因此,「DSP只能執行固定的函式」就變成了一種刻板印象。
所謂可設定式,是指可以使用一種或數種方法,將可設定式DSP修改成客戶想要的應用功能。不過,這些修改必須在它變成硅晶之前,就得完成。
而可擴充性,是指它可以增加或縮減功能,來支援不同種類的應用需求。在大多數的情況下,是專指增加功能而言,這可以使它擁有數顆傳統DSP的功能。 基本特性
可設定式DSP最明顯的特性,就是能動態地執行最佳化作業。它以下列三種方式來強化運算效能。
擴充或縮小
藉由增加或減少DSP處理器里的可用資源,同一種應用就可以具有不同等級的運算效能。可擴充性可以藉由增加單一DSP的資源,或者使用數個DSP核心來達成。不過,為了能完善地利用這些新增的資源,以提高運算效能,還需要一個功能強大的編譯器來配合才行。如果沒有這種編譯器的協助,則可設定式DSP只會使應用產品的開發時程增長而已。
位置與混合
藉由改變資源的組成結構(在不增加額外的資源之情況下),可設定式DSP可以依照不同的應用需求,提供不同等級的效能。例如,暫存器的位置(必須防止它的資料爆滿溢出)會直接影響到程式運算迴圈的效能。同樣地,功能強大的編譯器在這里也扮演著舉足輕重的角色。
自訂指令(custom instruction)
每一種應用都具有一些特殊的運算作業(數學的、工程的或其它),但并不是全部都適合DSP去執行。因此,實際上,單一的DSP不可能包含所有的指令或運算函式。而且,DSP廠商也無法事先就完全知道,所有客戶需要的全部運算函式和指令。所以,為了提供彈性設計的方便性,可設定式DSP允許使用者可以將自己設計的指令置入此DSP中,以滿足客戶的需求。
除了提高運算效能以外,可設定式DSP還必須支援功率和體積(成本)的最佳化。因為效能、功率、體積三者是技術產品成敗的關鍵,所以可設定式DSP必須在指定的效能等級中,以程式求出最合適的耗電功率和體積大小。
可設定式DSP可以用比較少的時脈週期和邏輯電路,得到與傳統DSP同等級的效能,這是靠自訂指令來完成的。在可程式化方面,此種DSP具有下列兩個重要的功能。
指令的執行
和一般的處理器一樣,可設定式DSP讀取和執行指令串流或目標碼(object code),以實現特定的應用功能。這些功能包含支援多重標準或多重格式,甚至包括未知的新功能,或數目更多的格式。藉由撰寫和執行新的指令,它就可以支援許多種不同的應用功能,這是傳統DSP望塵莫及的。
高階語言
使用高階語言(C與Java)來設計處理器的程式,具有右列的幾個優點:程式設計者的生產力會提高(因為容易撰寫和驗證)、設計彈性高(因為容易變更)及維護性高(因為容易除錯和修改)。這些優點是低階語言(組合語言)所沒有的。如果不使用高階語言來開發,則徒具可程式化功能的DSP就沒有價值了。不過,高階語言所帶來的便利性,其實是源自于高效率的編譯器與優化程式(optimizer)。 基本單元
平行執行單元(parallel execution unit)是可以視需要做增減調整的;也可以結合數個可設定式DSP核心,形成陣列的架構一起工作。高速的可設定式DSP是「極長指令字組(Very Long Instruction Word;VLIW)」的可程式化處理器。VLIW DSP的運算速度是很驚人的,例如:TI于2004年2月推出的TMS320C64x DSP核心的時脈速率最高可達1GHz。
需要經過數位訊號處理的應用,其頻寬需求是非常高的。例如:簡單的16與32位元的資料轉換,就需要進行數百次的乘加運算,再結合大量的資料流處理,因此,需要一個非常有效率的運算平臺才行。
另一種可以使運算速度加快的方法,就是盡可能同時執行許多個運算作業。VLIW處理器的功能正可以達到這個目的。因為每一個指令字組(instruction word)包含了許多個時槽(time slot),因此編譯器可以在每一個週期內,指定許多個動作,而且在每一個時槽里,執行個別的動作。其結果是,VLIW處理器就可以在一個週期內,完成數個運算作業。VLIW處理器特別適合應用于數位訊號處理工作,因為DSP的工作都是規律而重復的,幾乎不需要控制碼。
高速可設定式DSP具有數個類似「算數邏輯單元(ALU)」的結構,稱作「計算單元(Computational Unit;CU)」,它們前后串接,并藉由「指令時槽(instruction slot)」控制每一個CU。當兩個CU共用一個指令時槽時,就發生了「重疊」現象,此時不能進行「同時作業」。不過,高速可設定式DSP允許CU混合不同的指令,并利用指令時槽,決定每一個週期內的指令型態與數量。
在VLIW架構中,指令字組包含了許多個時槽,每一個時槽各控制一個運算作業。因此,藉由改變時槽或CU的數量,就可以增加或減少每週期所執行的運算數量。當增加CU后,會使可用的混合資源改變,好讓編譯器能對平行作業(parallel operation)做出最好的排序(schedule)。「可設定式」之名就來自于此。
典型的CU包含:算數運算單元、乘加單元(MAC)、位移單元、計數器和其它指令處理指元。資料路徑(data path)大小一般是16或32位元,或兩者兼具;採固點或浮點運算。大部份的CU還支援「單指令多資料(Single Instruction Multiple Data;SIMD)」運算功能,可以處理位元組(byte)或半字組(half word)的資料,例如將平面空間的圓轉換成3D空間的圓(由多個三角形構成)。
同樣的,記憶介面單元(Memory Interface Unit;MIU)也被指令時槽組織起來,并透過指令時槽決定讀取的時機。MIU支援資料存取和位址(address)生成。高速可設定式DSP支援16或32位元的位址空間(address space)。因為MIU和CU一樣,都受指令時槽的控制,因此可以藉由改變時槽的數目,來變更可用的MIU數量。
和傳統處理器不同的是,可設定式DSP的暫存器(register)分散于各地,它不使用集中式的單一「暫存檔案(register file)」來管理。這會使得運算結果的位置,比較靠近產生此結果的地方和應用此結果的地方。同時,這也讓編譯器能更靈活地將資料配置到儲存的位置。這觀念類似RAM的隨機存取動作。
「資料通訊區塊(data communication block)」可以讓資料在不同的儲存位址之間移動,以及輸入到CU里。它包含了數個具有多工(MUX)功能的匯流排,并且受編譯器的控制。(圖一)是高速可設定式DSP的簡易架構。
|