在激光焊接模擬方面,由于這是一個高階、非線性、具有自由表面的三維問題,因而要精確計算和模擬有許多邊界條件和參數都必需確定,但由于模擬對結果預測、工程設計以及物理本質揭示顯示出的重要作用,相關的研究一直未中斷。
2.6 鋁合金的激光焊接
CO2激光焊接鋁合金的困難主要在于高的反射率以及導熱性好,難以達到蒸發溫度、難于誘導小孔的形成(尤其是對Mg含量比較小時)以及容易產生氣孔。提高吸收率的措施除了表面化學改性(如陽極氧化)、表面鍍層、表面涂層等外,也有用激光—TIG、激光—MIG的報道,其中MIG—DC electrode bbbbbbbb (DCEP)方法由于表面的清理作用強和加絲的合金化作用效果較好。
最近,比利時的L·Cretteur和法國的S·Marya 對6061鋁合金進行了混合氣和焊劑的CO2激光焊。在給定的試驗條件下表明:70%He +30%Ar、氣流方向與焊接方向相反時效果為好;針對穿透焊接時焊縫背面容易產生下垂缺陷,采用75%LiF+25%LiCl的焊劑,起到了祛除氧化、改善熔化金屬與背面母材的接合,使背面焊縫具有“上翹”效應,在較寬的參數區間內形成了規整的焊道。對6061鋁合金的焊接表明,焊縫強度可達到母材的90% 。
2.7 激光熔覆
激光熔覆與其它表面改性方法相比,加熱速度快、熱輸入少,變形極小;結合強度高;稀釋率低;改性層厚度可精確控制,定域性好、可達性好、生產效率高。
激光熔覆除用于民品外,英、美等國也已用于航空機發動機Ni基渦輪葉片的耐熱、耐磨層的熔覆及修復。
3 電子束焊接和等離子弧焊接的最新進展
國外電子束焊接發展可歸結為:超高能密度裝置研制、設備智能化柔性化、電子束流特性診斷、束流與物質作用機制研究以及非真空電子束焊設備及工藝的研究等。
日本,加速電壓600kV、功率300kW的超高壓電子束焊機已問世,一次可焊200mm的不銹鋼,深寬比達70∶1 。
日、俄、德開展了雙槍及填絲電子束焊技術的研究。在對大厚度板第一次焊接的基礎上,通過第二次填絲來彌補頂部下凹或咬邊缺陷;日本采用雙搶實現了薄板的超高速焊接,反面無飛濺,成形良好。
法國研制成功的雙金屬和三金屬薄帶材電子束焊接也頗引人關注。 關于非真空電子束焊接,德國實現了母材為Al Mg0.4 Si1.2的旋轉件的填絲焊接,加絲材料為AlMg4.5Mn ,送絲速度35m / min ,焊接速度高達60m / min。該研究在斯圖加特大學的25kW電子束焊機上完成。
非真空電子束焊接(EBW—NV)在汽車制造領域一直倍受重視。例如,手動變速器中同步環與齒輪的非真空電子束焊接,生產率已超過500件/小時。
最近,德國和波蘭的學者共同研制了真空電子束焊接時安裝于真空室中的非接觸測溫裝置,測量點最小直徑1.8 mm,主要用于陶瓷和硬質合金的釬焊,該裝置可排除隨機的熱流的干擾,測量精度高。
在等離子弧焊接方面,變極性等離子弧焊以及鋁合金穿孔等離子立焊是關注點之一 .










