產品詳情
閘門延安甘泉縣水閘,按其所承擔的主要任務,可分為:節制閘、進水閘、沖沙閘、分洪閘、擋潮閘、排水閘等閘門按閘室的結構形式,可分為:開敞式、胸墻式和涵洞式(圖1)。開敞式閘門水閘當閘門全開時過閘水流通暢,適用于有泄洪、排冰、過木或排漂浮物等任務要求的水閘,節制閘、分洪閘常用這種形式。胸墻式水閘和涵洞式水閘,適用于閘上水位變幅較大或擋水位高于閘孔設計水位,即閘的孔徑按低水位通過設計流量進行設計的情況。胸墻式的閘室結構與開敞式基本相同,為了減少閘門和工作橋的高度或為控制下泄單寬流量而設胸墻代替部分閘門擋水,擋潮閘、進水閘、泄水閘常用這種形式。如中國葛洲壩泄水閘采用12m×12m活動平板門胸墻,其下為12m×12m弧形工作門,以適應必要時宣泄大流量的需要。涵洞式水閘多用于穿堤引(排)水,閘室結構為封閉的涵洞,在進口或出口設閘門,洞頂填土與閘兩側堤頂平接即可作為路基而不需另設交通橋,排水閘多用這種形式。


閘門延安甘泉縣水閘由閘室、上游連接段和下游連接段組成(圖2)。閘室是水閘的主體,設有底板閘門閘門、 啟閉機、閘墩、胸墻、工作橋、交通橋等。閘門用來擋水和控制過閘流量,閘墩用以分隔閘孔和支承閘門、胸墻、工作橋、交通橋等。底板是閘室的基礎,將閘室上部結構的重量及荷載向地基傳遞,兼有防滲和防沖的作用。閘室分別與上下游連接段和兩岸或其他建筑物連接。上游連接段包括:在兩岸設置的翼墻和護坡,在河床設置的防沖槽、護底及鋪蓋,用以引導水流平順地進入閘室,保護兩岸及河床免遭水流沖刷,并與閘室共同組成足夠長度的滲徑,確保滲透水流沿兩岸和閘基的抗滲穩定性。下游連接段,由消力池、護坦、 海漫、 防沖槽、兩岸翼墻、護坡等組成,用以引導出閘水流向下游均勻擴散,減緩流速,消除過閘水流剩余動能,防止水流對河床及兩岸的沖刷。
閘門水閘關門擋水時,閘室將承受上下游水位差所產生的水平推力,使閘室有可能向下游滑動。閘門閘室的設計,須保證有足夠的抗滑穩定性。同時在上下游水位差的作用下,水將從上游沿閘基和繞過兩岸連接建筑物向下游滲透,產生滲透壓力,對閘基和兩岸連接建筑物的穩定不利,尤其是對建于土基上的水閘,由于土的抗滲穩定性差,有可能產生滲透變形,危及工程安全,故需綜合考慮閘址地質條件、上下游水位差、閘門閘室和兩岸連接建筑物布置等因素,分別在閘室上下游設置完整的防滲和排水系統,確保閘基和兩岸的抗滲穩定性。開門泄水時,閘室的總凈寬度須保證能通過設計流量。閘的孔徑,需按使用要求、閘門閘門形式及考慮工程投資等因素選定。由于過閘水流形態復雜,流速較大,兩岸及河床易遭水流沖刷,需采取有效的消能防沖措施。對兩岸連接建筑物的布置需使水流進出閘孔有良好的收縮與擴散條件。建于平原地區的水閘地基多為較松軟的土基,承載力小,壓縮性大,在水閘自重與外荷載作用下將會產生沉陷或不均勻沉陷,導致閘室或翼墻等下沉、傾斜,甚至引起結構斷裂而不能正常工作。為此,對閘室和翼墻等的結構形式、布置和基礎尺寸的設計,需與地基條件相適應,盡量使地基受力均勻,并控制地基承載力在允許范圍以內,必要時應對地基進行妥善處理。對結構的強度和剛度需考慮地基不均勻沉陷的影響,并盡量減少相鄰建筑物的不均勻沉陷。此外,對水閘的設計還要求做到結構簡單、經濟合理、造形美觀、便于施工、管理,以及有利于環境綠化等。
閘門延安甘泉縣每年在汛期前對所有的砼和金屬構件作仔細檢查,對液壓系統進行維護和調試,確保在洪水來時能夠正常啟閉。閘門防洪和遠程控制的運用在山區洪水來勢兇猛,歷時短,一般都夾帶著大量的泥沙完全開啟和完全關閉閘門的時間關系表液壓水力翻板閘門在績溪縣水利和垃圾,為確保防洪安全,應及時掌握氣象預報,如有明顯的大暴雨出現,要提前將閘門全部開啟,使漂浮物從門頂順利過閘,推移質泥沙從門底過閘。如果強降雨在夜晚突然來時,液壓水力互動翻板閘門也可能在水力作用下自動開啟。但當上游有大量垃圾時,可能會引發事故,因此要加強管理,盡可能提前將閘門開啟。洪水過后及時清理垃圾,并及時關閉閘門,留住珍貴的水資源。泄水建筑物的事故平面閘門擔負著緊急情況下動水下閘、防止事故擴大的重任,閘門動水關閉的可靠性直接影響工程的泄水安全。在事故平面閘門的動水關閉過程中,閘門水動力荷載受閘門體型、作用水頭及流速、啟閉速度及通氣等諸多因素的影響而難以準確把握,設計荷載產生偏差時容易導致閘門啟閉機容量不足或閘門不能正常關閉等問題。當閘門體型設計不良時閘底產生水流分離導致的壓力波動,可能會帶來閘門振動的不利影響。隨著高水頭平面閘門日益增多,閘門的水動力特性更加復雜,其運行可靠性問題更加突出。因此研究高水頭閘門復雜的水動力特性,分析閘門體型及水力參數對閘門水動力荷載的影響,是高水頭平面閘門工程設計和應用急需解決的問題。本文針對高水頭平面閘門動水關閉的水動力特性問題,首先結合典型事故平面閘門的模型試驗分析了閘門動水關閉水流及水動力荷載的變化特征;在物理模型試驗及原型觀測結果驗證數值模擬方法的基礎上,系統深入的研究了閘門水頭、底緣體型及啟閉速度等參數和閘門水動力荷