產品詳情
對槽軸線段進行浚前測量,取得手資料,并繪制施工圖紙。
導標布設:以基槽軸線為基準,左右基槽邊線各設一對線標,軸線上設置一組中心標。
管道基槽開挖擬采用兩棲式挖泥船進行。挖泥船采用沿著溝槽軸線從發送道位置開始逐步往對岸施工,并且為了防止河內淤泥向已挖溝槽內滑入,采用二次清理溝槽。平面控制采用在岸上建立交會標選用性能優良的六分儀交會定位,控制挖泥船的船位。在導流槽邊緣用竹竿打樁定位,本工程的施工定位至關重要,對此我們采用“激光測距儀、GPS和導標”三結合的方法開展施工平面控制,確保施工質量控制。平面位置控制,由挖泥船參照中心導標和岸上架設經緯儀導向結合。能夠確保管道基槽軸線的準確。深度控制,挖泥船上操作人員根據水位變化隨時調整開挖深度,確保基槽平整度控制在規定范圍內,船艏當班水手用測繩隨時復測挖深情況。開挖時要把穩慢移,根據挖泥導標和水尺記錄,確保基槽軸線準確、槽底平整。基槽開挖時,要有專人對已挖基槽進行自檢,基槽軸線、寬度、深度、平整度、坡比應本符合設計要求,并記錄備查。基槽開挖完成后,及時通知業主及監理工程師進行驗收,提供完整的基槽施工驗收資料,驗收合格后方可進行下一工序施工。


新聞:銅仁管道水下敷設公司&自流管沉管結合理論分析、數值模擬和模型試驗數據,分析了溫度和相對濕度對混凝土中鋼筋腐蝕控制模式及速率的影響規律.首先基于混凝土中鋼筋腐蝕的電化學原理,并考慮電極反應的逆向反應速率對活化極化過電位的影響,改進了傳統鋼筋腐蝕宏電池模型中的陽極腐蝕電位;然后分析了溫度和相對濕度對平衡電位、交換電流密度、極限電流密度等參數的影響,建立了能夠有效考慮溫度和相對濕度影響的鋼筋腐蝕宏電池模型;最后利用人工和自然氣候環境下的試驗數據,對比驗證了所建模型的有效性,并分析了溫度和相對濕度對混凝土中鋼筋腐蝕控制模式及速率的影響規律.
鋼管組焊
沉管預制的彎頭采用5D的45度3PE防腐彎管,每只彎管長度為2.35m,在直管兩邊各對接兩只彎管,兩只彎管中心對中心為1.65m,在彎管兩頭各加5m長度的直管,這樣沉管段預制完成。
在管道拼裝現場采用吊車、小型龍門架進行成品管的對口焊接。
在焊接前應對進場的成品管再次進行外觀復檢,檢查管節在運輸過程中可能造成的缺陷,并應予以消除。
鋼管焊接采用手工下向焊,在正式組焊前,根據現場環境,進行焊接設備與焊接工藝的認可試驗。全部現場焊接作業、焊接設備、焊接工藝規程皆經監理工程師認可并由合格焊工執行。debisheng0866
鋼管組焊時,應減少錯邊量,從管頂中心分別向下組對,四周管口做到內口平齊,錯邊且不超過0—1.6mm,對接間隙0.8—1.0mm,相鄰縱縫之間錯開200mm以上。


新聞:銅仁管道水下敷設公司&自流管沉管基于數值仿真分析方法,針對某航天器結構中的十字梁結構進行了優化設計。依據結構承載特點,優化了傳力路徑,合理地設計了加強區域以及鋪層順序,并采用復合材料整體鋪設成型工藝制備了試驗件。試驗結果表明,經過優化設計,十字梁結構重量由699 g降低到436 g,減重達37.6%,在6000 N壓縮載荷作用下的最大變形由0.33 mm降低到0.19 mm,滿足其剛度設計要求。焊接前應清除焊道處的油漆、鐵銹、油污、積水,雜質等,早晚溫度低時用氧炔焰清除水銹。
手工電弧焊條用E6010在焊接時,先焊根焊,再熱焊蓋面,電動砂輪清根,認真清理底層焊渣。
焊接后,打磨飛濺、焊瘤、不規則焊縫。先進行外觀檢查,合格后,進行內部檢驗。檢驗合格后及時進行接頭的外防腐,其要求與成品管的要求相同。
如此反復操作,直到完成要求長度的管段組裝。
焊接檢驗:包括外觀檢驗和無損檢測,外觀檢驗由施工單位和監理單位檢驗,根據設計要求,所有環向焊縫均進行100%X射線檢驗,射線探傷應達到3323-87 Ⅱ級的標準。焊接檢驗人員必須持證上崗,保證儀器完好,檢驗結果準確。焊接檢驗應隨焊接進度及時檢驗,并將經監理確認的結果及時反饋,以便施工單位及時掌握質量動態,采取措施,制訂對策,為下道工序創造條件。
長管段組裝完成后,兩端封焊盲板,同時做好鋼管下水拖運的各項準備工作與措施,然后待鋼管接口防腐固化后,進行鋼管拖運沉放。
新聞:銅仁管道水下敷設公司&自流管沉管通過對在自然環境下經歷2 a干濕循環作用的銹蝕鋼筋混凝土試件的試驗研究,探討了保護層銹脹開裂后鋼筋的銹損程度及其影響因素.依據試驗結果,運用數理統計相關知識,對試件的銹蝕特征進行分析,建立了與保護層厚度、表面裂縫寬度、鋼筋直徑、混凝土強度等級及箍筋間距相關的混凝土中鋼筋銹蝕深度預測模型;對模型進行參數敏感性分析表明,表面縱向銹脹裂縫寬度是影響鋼筋銹蝕深度的最主要因素,除其他因素外,箍筋間距對縱向鋼筋銹蝕深度也具有一定影響,且隨箍筋間距減小影響程度逐漸顯著;經試驗驗證,所建立模型具有較強的適用性.


