產品詳情
甘肅高臺氧化鋯分析儀尾氣含氧量檢測
氧化鋯氧探頭的測氧原理
氧化鋯的導電機理:電解質溶液靠離子導電,具有離子導電性質的固體物質稱為固體電解質。固體電解質是離子晶體結構,靠空穴使離子運動導電,與P型半導體空穴導電的機理相似。
是德科技擁有豐富的產品系列,而且鼎力支持開放接口和體系結構,能夠為客戶提供廣泛的電子戰場景仿真解決方案,從單一測試臺測試到場景仿真應有盡有。這款現代化的電子戰測試和評估解決方案具有出色的可擴展性,通過重新配置系統,能夠實現對射頻測試資產的利用。是德科技信息戰事業部總經理GregPatschke表示:“是德科技深知,我們的客戶需要強大的解決方案以便從容應對日新月異的電子戰環境。我們將繼續與客戶攜手合作,開發和交付能夠快速適應新環境的解決方案,幫助客戶提升實驗室的測試水平。
由于檢測是在高溫下操作,若待測氣體中含有H2和CO、CH4時,此物質會與氧發生反應,消耗部分氧,氧濃度降低,引起測量誤差。所以儀器在測量含有可燃性物質的氣體時應相應考慮此項因素,以避免測量失準。在這種情況下需要選擇氧氣及可燃物氣體氧化鋯分析儀,而不僅僅是氧氣氣體分析儀。當測量含有腐蝕性氣體時,應采用抗腐蝕的金屬探頭比如鎳鉻合金探頭。用于氫氣分析時,流量計讀數在左側;用于氮氣分析時,流量計讀數在右側”紅外熱像儀可以通過蝙蝠的熱特征來實現蝙蝠的監測。蝙蝠是夜行動物,通常在黃昏時離開白天的棲息地,這是在行動中捕捉蝙蝠視頻的理想時刻。由于紅外熱像儀探測的是熱量,而不是光線,因此研究人員可以在夜間研究蝙蝠,而夜間正是蝙蝠活躍的時段。由于其視覺特性,熱成像技術還可與智能軟件相結合,智能軟件能夠計數和識別蝙蝠并執行智能運動跟蹤。PPUR研究小組成員在洞穴前的瀉湖里,黃昏前時刻,這時是紅外熱像儀捕捉離開洞穴的蝙蝠的理想時刻。所以在實際的工作中,更多的工程師會去選擇多通道的電子負載來進行測試,這樣不但工作效率大為提高,測試數據也更為。艾德克斯的IT87系列多通道電子負載采用了抽換式模塊設計,該系列電子負載共有8種型號的模組,從2W到6W,工程師可以自由搭配模塊。單個機框可達8通道,擴展機框可達16通道,負載模組之間由系統同步控制,即可同步執行多16路電源輸出的測試。因此IT87系列電子負載能夠滿足多路輸出電源的測試需求,節省空間,提高測試效率。
氧化鋯分析儀技術參數:
測量范圍:0.1%-25% 氧氣
基本誤差:≤±1.5%FS
響應時間:T90小于5秒
重復性: ≤±1.0%FS
樣氣壓力:±10kpa
測量介質:主要為煙氣,或混合氣體
加熱爐電壓:85V±10%
熱偶型號:K偶
絕緣電阻:>10兆歐
鋯管本底電勢:700℃/空氣狀態下 (小于-2mv)
被測氣體溫度:<700℃ 氧化鋯探頭適合用于腐蝕性小的干燥氣體
氧化鋯探頭不適合用于有可燃性或性氣體環境內,以免產生安全上的問題
鋯管內阻:700℃/空氣狀態下(正向電阻+反向電阻)/2<30歐姆
傳感器長度:1.2米、1.0米、0.8米、0.6米(其他尺寸根據用戶需要可特制)
分析儀重量:約1-3KG
直插式檢測是將氧化鋯直接插入高溫被測氣體,直接檢測氣體中的氧含量,這種檢測方式適宜被檢測氣體溫度在700℃~1150℃時(特殊結構還可以用于1400℃的高溫),它利用被測氣體的高溫使氧化鋯達到工作溫度,不需另外用加熱器。直插式氧探頭的技術關鍵是陶瓷材料的高溫密封和電極問題。由實驗可知:當氧化鋯被加熱到一定溫度時,測量氣與參比氣中的氧濃度之比的對數與兩極板間的電動勢成正比
環境試驗一般只對小部分產品進行,常見的環境試驗內容和方法如下:溫度試驗用以檢查溫度環境對儀器儀表的影響,確定儀器儀表在高溫和低溫條件下工作和儲存的適應性,它包括高溫和低溫負荷試驗、高溫和低溫儲存試驗。高溫試驗用以檢查高溫環境對儀器儀表的影響,確定儀器儀表在高溫條件下工作和儲存的適應性。它包括高溫負荷試驗和高溫儲存試驗。低溫試驗用以檢查低溫環境對儀器儀表的影響,確定儀器儀表在高溫條件下工作和儲存的適應性。挑戰在于,在“空中”(OTA)進行測量時,基準電平必需保持得相當高(-30dBm),這樣在測量所有RF能量時,頻譜分析儀才不會過載。在大多數頻譜分析儀中,RBW控制功能會根據用戶配置的頻寬自動設置。在OTA測量中,應降低RBW值,以查看可能影響受擾接收機的小信號。這種組合導致大多數電池供電的頻譜分析儀的掃描速率非常低,也就是說,其不可能看到導致干擾的小的間歇性瞬態信號。實時頻譜分析儀解決了這個問題,它能夠使用RBW較窄的濾波器測量頻譜,速度要快于基本掃頻分析儀。
氧化鋯分析儀主要應用于:包括能耗行業,如鋼鐵冶金、火力發電廠、石油化工、造紙廠、食品業、紡織品業,還包括各種燃燒設備,如城市生活垃圾焚燒爐、危險廢棄物焚燒爐、中小供熱型鍋爐等。 氧化鋯氧量分析儀將氧化鋯檢測器(探頭)和變送器采用一體化結構設計。使用和安裝更加便捷,同時減少了分體式所必須使用的連接電纜。在檢測器的核心元件氧化鋯濃差電池上,采用了納米材料和先進的生產工藝,在電極涂層上添加電極老化的添加劑。大大提高了氧化鋯測量探頭的精度和使用壽命。檢測器采用直插式探頭結構,不需取樣系統,能及時反映鍋爐內燃燒狀況,如與自控裝置配合使用,可有效地控制燃燒狀況。轉換器采用單片機智能化設計,漢字液晶顯示,使數據顯示、功能控制更具有人性化;可與各類型DCS數據接入設備連接。使儀表的操作變的簡單,容易掌握。如果流量轉子下不來,則說明流量計漏氣
煙氣氧含量檢測的意義:煙氣氧含量是鍋爐運行重要監控參數之一和反映燃料設備與鍋爐運行完善程度的重要依據,其值的大小與鍋爐結構、燃料的種類和性質、鍋爐負荷的大小、運行配風工況及設備密封狀況等因素有關。氧含量越小,即過量空氣系數越小,則表明化學不完全燃燒熱損失和機械不完全燃燒熱損失增加;氧含量越大,即過量空氣系數越大,則表明空氣量送入過大氧含量越小,即過量空氣系數越小,則表明化學不完全燃燒熱損失和機械不完全燃燒熱損失增加;氧含量越大,即過量空氣系數越大,則表明空氣量送入過大。同時,系統可實行氧電勢、探頭溫度、校正系數值的顯示,并對鋯管的加熱電爐進行恒溫控制,且輔以斷偶、超溫保護、熱偶反接保護,確保系統可靠工作過量的空氣造成爐溫下降,不但影響燃燒,還會帶走大量的熱量和灰塵,增大污染排放濃度的計算結果,同時風量大也增加了排煙耗電量。控制煙氣氧含量,對控制燃燒過程,實現安全、和低污染排放是非常重要的意義。供給加熱爐、鍋爐等加熱設備的燃料燃燒熱并不是全部被利用了。以軋鋼加熱爐或鍋爐為例,有效熱是為了使物料加熱或熔化(以及工藝過程的進行)所必須傳入的熱量,爐子煙氣帶走的物理熱是熱損失中主要部分。當鼓風量過大時(即空燃比α偏大),雖然能使燃料充分燃燒,但煙氣中過剩空氣量偏大,表現為煙氣中O2含量高,過剩空氣帶走的熱損失Q1值增大,導致熱效率η偏低。與此同時,過量的氧氣會與燃料中的S、煙氣中的N2反應生成SO2、NOX等有害物質。而對于軋鋼加熱爐,煙氣中氧含量過高還會導致鋼坯氧化鐵皮增厚,增加氧化燒損。當鼓風量偏低時(即空燃比α減小),表現為煙氣中O2含量低,CO含量高,雖說排煙熱損失小,但燃料沒有完全燃燒,熱損失Q2增大,熱效率η也將降低。
3D金屬打印過程中,以金屬粉未為原料,打印任意形狀的零件,而結構件的溫度高低、溫度變化趨勢對金屬結構件的特性造成關鍵的影響,溫度控制是打印過程中重要的因素。TiX1000+微距鏡頭3在離目標90厘米進行檢測技術難點:部分材料目標小:開始打印時,目標尺寸可能較小,如案例中,只有2-3mm而且需要看清楚材料表面的溫度分布,及溫度變化過程。需要微距鏡頭才可以清晰看到材料表面的溫度分布。同時由于加工設備的需要及加工安全需要,拍攝距離可能需要需要較遠,則需要微距3的鏡頭。為避免此問題,運維人員需要對爐內運行狀況進行定期檢測。傳統檢測方式只能通過人眼觀察以及對爐內進行接觸式單點測溫,粗略判斷爐內運行狀況,而紅外熱像儀可實現全像面、遠距離觀測。工作時裂解爐內的溫度高達1℃,工作人員通過巨哥電子熱像儀直觀地了解到裂解爐內包括對流管、爐壁的溫度狀態以及因長期使用后產生的外部結垢、內部堵塞等。此外,在石化生產過程中存在大量的管道及熱力設備需要進行保溫處理,保溫效果的好壞直接關系到產能建設和運營成本。

