產品詳情
遵義遵義城建挖坑基破裂石頭混凝土破裂機

重慶城區的青砂巖硬很多,密度大,更重,但比較脆,當地俗稱:“龍骨巖”或“油光石”,和碳酸鈣含量高的石灰巖比較相近,鉆孔的時候白色粉塵很大,硬度接近于大理石。通過現場海洋曝露試驗和實驗室海水浸泡試驗,采取分層取樣和化學分析方法,應用氯離子三維擴散理論,研究了普通混凝土和高性能混凝土在海洋大氣區、潮汐區、水下區和實驗室海水浸泡下的Cl-擴散系數變化規律.結果表明,混凝土的Cl-擴散系數隨著曝露時間的增加而降低,高性能混凝土的抗Cl-擴散性優于普通混凝土.在Khatri計算模型的基礎上,提出了考慮劣化效應系數的海工混凝土使用壽命計算模型.該模型計算結果與Clear經驗模型基本吻合,解決了Khatri計算模型結果與實際壽命不相符的問題.
裂石機
當地遇到不能用炸|藥、爆|破的情況下一直是采用風鎬鉆孔+膨脹破碎劑+破碎錘的方法,但效果不理想,產量很低,工期緊的工程就等不急。

針對風力發電機葉輪設計復雜、造型困難的問題,根據Wilson法的設計流程,運用Wilson算法對15kW的風機葉片進行氣動外形參數的計算,應用Matlab軟件的fmincon化函數對葉片各葉素的弦長和扭角進行優化。開發了小型風機葉片氣動外形設計的通用程序,將設計結果直接導入SolidWorks中,可自動生成葉片的三維實體模型,省去了大量的數據轉換和存儲過程,實現了葉片的、智能化設計,解決了Matlab與SolidWorks之間的數據傳輸問題,提高了風機葉片設計和造型的精度、效率。
主要原因是:1.石頭太硬,直接用地方的小破碎錘打不動。
2.膨脹劑反應太慢,等待時間長;溫度低了和雨水天氣效果就不行了,膨脹劑產生的力量太小,一次裂開間距只有幾十公分,還需要臨空面。
3.人工風鎬鉆孔太慢。
我們采用液壓劈裂棒對這樣堅硬的巖石都能給脹裂開,裂縫明顯,一排排的給脹裂開,幫助破碎錘快速破碎解小,提高了破碎石頭的效率和產量。
我們去施工后和當地傳統的施工方法一比,差距就非常明顯了,我們的優勢是:
1.這種石頭能每隔兩米以上的間距膨脹開一排,馬上放入設備,就能出效果裂開石頭,基本不用等待。
2.高風壓的大型潛孔鉆,鉆孔的直徑達到了20公分左右,但鉆孔的效率還高太多。
3.設備力量大,裂開石頭的縫隙大,在加上我們調去的特大型破碎錘,施工產量大。
遵義遵義城建挖坑基破裂石頭混凝土破裂機

基于氣熱法對風力機葉片除冰的傳熱計算進行分析,主要為給定空氣加熱器輸出熱量后,對除冰時間的傳熱分析進行計算。首先介紹了風力機葉片結冰的機理和氣熱法除冰的原理,然后進行傳熱過程中的對流換熱以及導熱的理論計算,從而得到了各個傳熱過程中的傳熱量,并且估算出除冰溫度下空氣加熱器的輸出熱量,后通過仿真實例計算出理論上達到除冰要求時所需要的時間。對葉片進行傳熱分析可以評估除冰系統運行時的效率,提高除冰系統的經濟性,同時也為工程傳熱計算提供依據。
愚公斧液壓劈裂棒在浙江杭州的施工,當地稱為“青石”的堅硬巖石,不能采用任何爆|破以后,沒有找到好的施工方法,都是采用大型破碎錘直接鑿打的“笨辦法”,施工進度異常緩慢,成本太高。
浙江這些國內應該是施工技術比較發達的地區,針對堅硬巖石的靜態爆|破/非爆|破施工,居然普遍都還在使用破碎錘去硬打的原始方法,據我們了解,難打的石頭175左右的破碎錘*打個兩三車料,甚至是一車料都有可能,但是居然一直都還在堅持這樣做。主要原因還是:劈裂機這些設備(手持式的或者挖機上吊的)當地人其實早就看到用過,但是用過的都失敗了,*發現都是被騙,不管是柱塞式的還是楔塊式的都被騙慘了。普遍對這些巖石劈裂/分裂設備都不抱信心或者是不愿意相信了。

遵義遵義城建挖坑基破裂石頭混凝土破裂機
裂石機
這些地區的石頭,難搞的普遍就偏硬,之前他們接觸的這些設備本身就存在力量太小和穩定性差、容易壞的問題,所以用不了,我們覺得原本就很正常。因為銷售賣給客戶的產品都是理論上可行。
愚公斧液壓劈裂棒力量上已經做到了不僅夠高強度的花崗石用,還完全有富余的、穩定性上也做到了長期耐用、技術上也做到了對臨空面要求不高,所以用在這些地區的堅石施工上效果就不會有問題。
采用MTS322電液式伺服試驗機,進行了試驗系統軸拉剛度律定試驗以及混凝土材料軸拉全過程試驗,分析了球鉸裝置對混凝土材料軸拉全過程試驗的影響.結果表明:球鉸裝置大大降低了加載系統的剛度,且試驗機作動頭位移與試件本身的變形間不遵循線性規律;用作動頭位移控制加載,有限提高球鉸裝置剛度并不能使混凝土材料穩定斷裂,只有采用試件實時應變控制加載,才有可能得到穩定的混凝土材料斷裂,從而獲得混凝土材料軸拉應力-應變全曲線.采用非接觸式阻抗測量法(NCIM),研究了水泥漿體的早期水化過程及其在不同階段的水化行為,并通過Kramers-Kronig變換驗證了阻抗數據的可靠性.結果表明:在溶解階段及動態平衡階段水泥漿體的阻抗近似為純電阻;在加速階段水泥漿體中的阻抗虛部值隨著頻率的增加而增加;水泥漿體早期抗壓強度與其阻抗模數有很好的線性關系.

